Nuts and Bolts of Corn Silage Quality

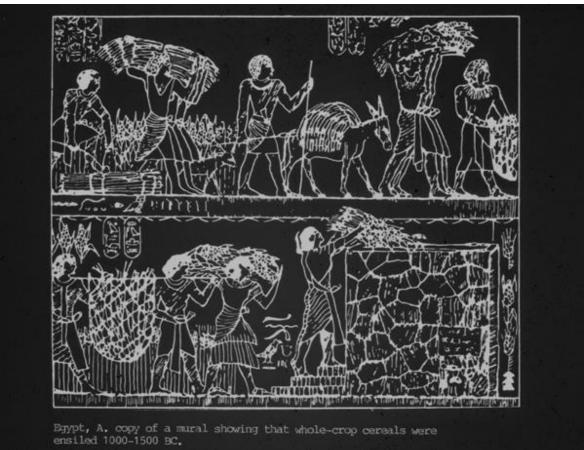
Dr. Hugo A. Ramírez Ramírez Dairy Extension Specialist

9

IOWA STATE UNIVERSITY Extension and Outreach Healthy People. Environments. Economies.

Outline

Factors affecting corn silage quality


Animal response to improved corn silage quality

Take home messages

IOWA STATE UNIVERSITY

Making corn silage

• Same old process but new discoveries?

IOWA STATE UNIVERSITY

Advancements in Silage Management

IOWA STATE UNIVERSITY

Dairy Extension Team

4

Silage Management = Risk Management

IOWA STATE UNIVERSITY

Fermenting forages: big picture process

- Plants contain sugars and also naturally present bacteria
- Some bacteria convert sugars into organic acids under anaerobic conditions

Propionic Acetic Lactic

 Enclosed system leads to acid accumulation, low pH and ultimately inhibition of microbial action = pickling forage

IOWA STATE UNIVERSITY

Phases of Corn Silage Fermentation

	Phase 1	Phase 2		Phase 4	Stable Phase
	Day 1	Day 2	Day 3-6	Day 7-21	Day 12 Until Open
Chemical Changes	Oxydation of sugars	Fermentation of sugars into Acetic Acid	Fermentation of sugars into more Acetic Acid, lactic acid, and ethanol releasing CO ₂	Fermentation of sugars into more acetic acid. Fermentation of sugars into lactic acid and ethanol releasing CO ₂	Increased concentration of <u>lactic acid</u> , pH drops ~4.0
Oxygen Levels	•••••••	·	· ·	•	
Bacteria Growth	Aerobic Bacteria	Acetic Acid Bacteria		Lactic Acid Bacteria	
pH Levels	6	5			4

IOWA STATE UNIVERSITY

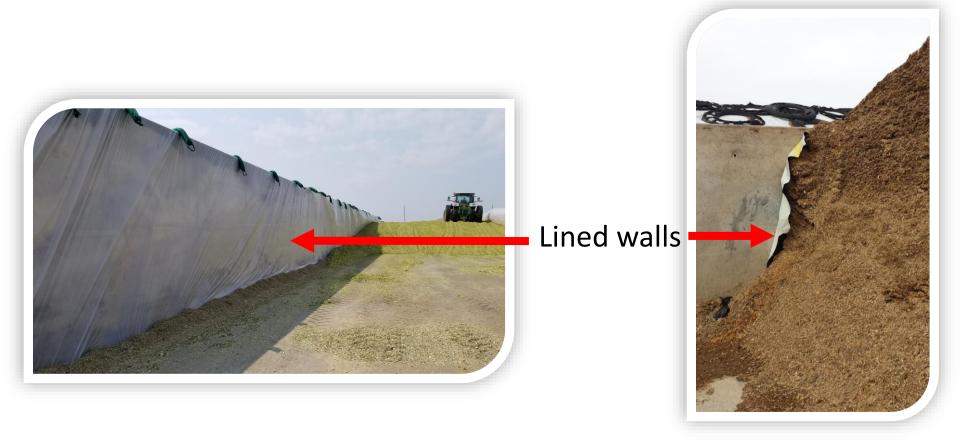
Growing corn for silage

- Is it a silage specific hybrid?
 - Yes: high quality forage, making silage is the only reasonable option
 - No: more flexibility to harvest as forage, grain, or inbetween!
 - Regardless of type of hybrid, the objectives are the same:
 - 1. <u>Grow forages to optimize yield</u>
 - 2. <u>Harvest nutrients at an optimal stage for digestion</u>

3. Promote efficient utilization of the harvested nutrients

IOWA STATE UNIVERSITY

Location, shape and size


IOWA STATE UNIVERSITY

Preparing the bunker: lined walls prevent spoilage in the edges of the bunker

IOWA STATE UNIVERSITY

Preparing the bunker

11

IOWA STATE UNIVERSITY

Storing conditions: lining bunkers

- Bunker with no lined walls
- Hard to pack close to the walls
- A Risk for water seepage

 along the walls

- Silage spoilage on edges
- Much lower quality than what was harvested
- Ultimate decision based on \$

IOWA STATE UNIVERSITY

Variations in dry matter = variation in nutrient supply

IOWA STATE UNIVERSITY

Forage production program

- Decisions will have long term consequences
- Lots of effort into growing make the best out of it for the subsequent phases

IOWA STATE UNIVERSITY

Corn silage is highly valuable, managing the different processes protects your investment

IOWA STATE UNIVERSITY

Harvesting corn for silage

- Deciding when to harvest
 - Best test is whole plant dry matter

Recommendations, rule of thumb 35% DM

Conventional corn: 32 – 35% DM

BMR corn: 30 – 34% DM (Mycogen recommendation)

IOWA STATE UNIVERSITY

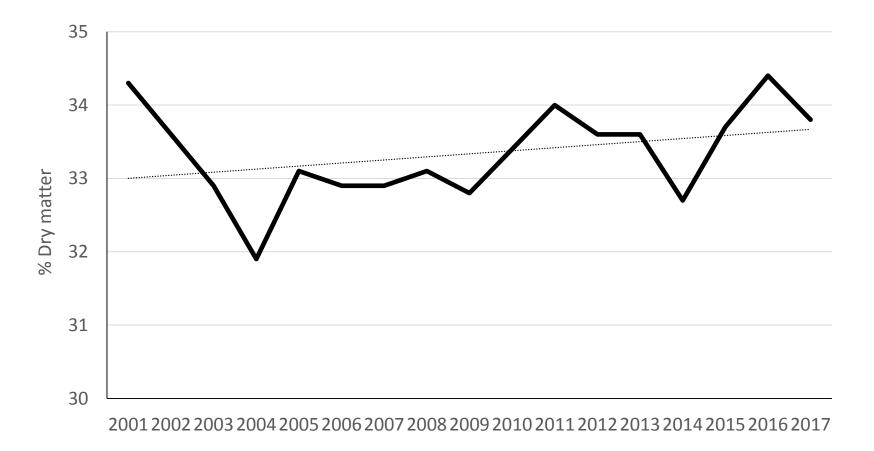
Harvesting corn for silage: maturity

- Deciding when to harvest
- Milk like is another indicator

Increasing maturity, less moisture, more starch deposition

IOWA STATE UNIVERSITY

Milk line

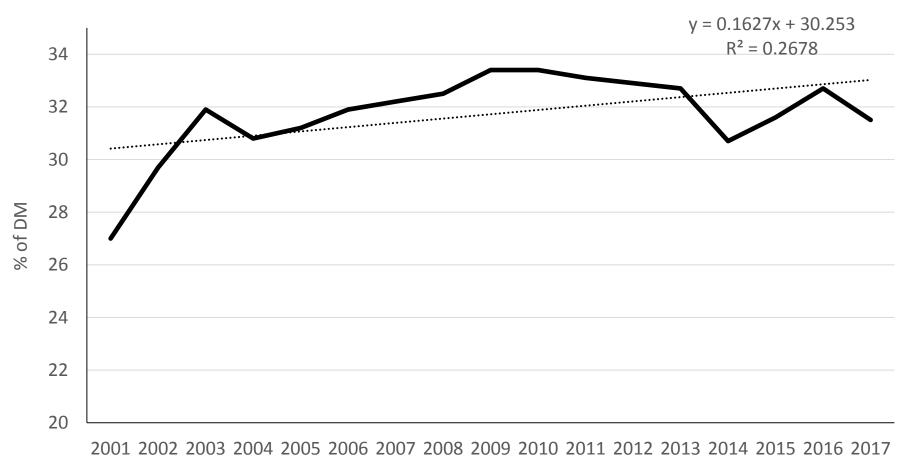


Starch content increases as milk line progresses towards the cob

Recommendations 2/3 to 3/4 milk line

IOWA STATE UNIVERSITY

Dry Matter

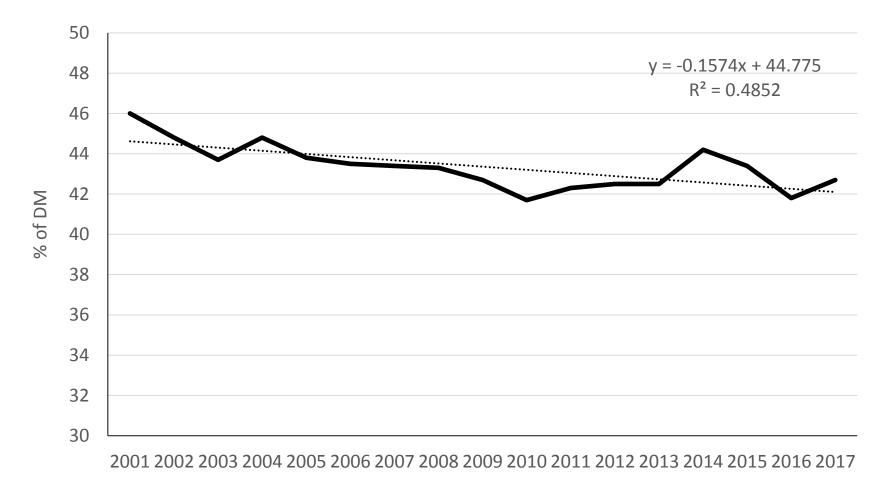


Year

Feed Composition Library – Dairy One

IOWA STATE UNIVERSITY

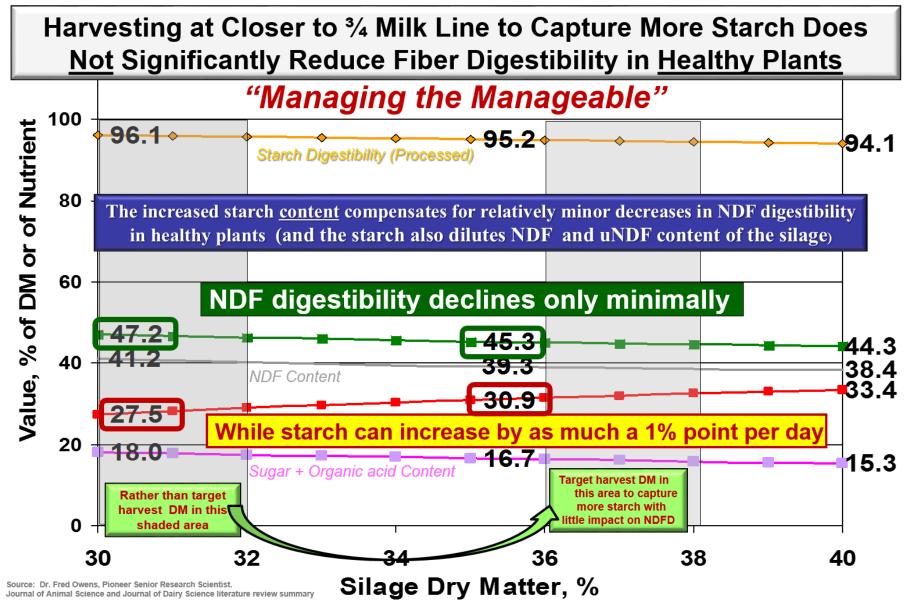
Starch



Year

Feed Composition Library – Dairy One

IOWA STATE UNIVERSITY


Neutral Detergent Fiber

Year

Feed Composition Library – Dairy One

IOWA STATE UNIVERSITY

Slide courtesy of Dr. Bill Mahanna (DuPont Pioneer) ²²

IOWA STATE UNIVERSITY

Deciding when to harvest

Consider a 0.5 to 1% dry-down rate to estimate when the target DM would be expected: Example: Target DM = 38% Current DM = 33% Difference: 5% (5%) / (0.5%/d) = 10 days until harvest

3/4 milk line (36 -38% DM) captures more starch but plant is dryer which requires excellent packing and kernel processing

IOWA STATE UNIVERSITY

Harvesting corn for silage: chop length

- Non processed corn silage: ¼ to ½ inch
- Processed corn silage: ¾ inch (19 mm)
- Shredlage: 1 inch to 1.2 inches (26 to 30 mm)

http://www.claasofamerica.com

IOWA STATE UNIVERSITY

Examples of particle that is too short

IOWA STATE UNIVERSITY

Kernel processing

 Kernel processing is the equivalent of smashing an eggshell

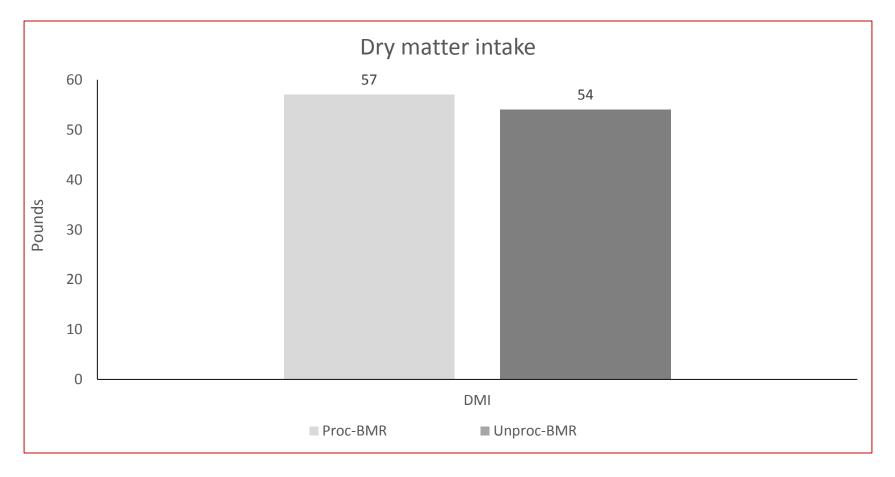
- Exposing starch for microbial fermentation
- When microbes have access to starch they may be better prepared to digest fiber and produce microbial protein

IOWA STATE UNIVERSITY

Kernel processing

- Roller gap 1 to 3 mm = crushing action
- Differential speed = shearing action

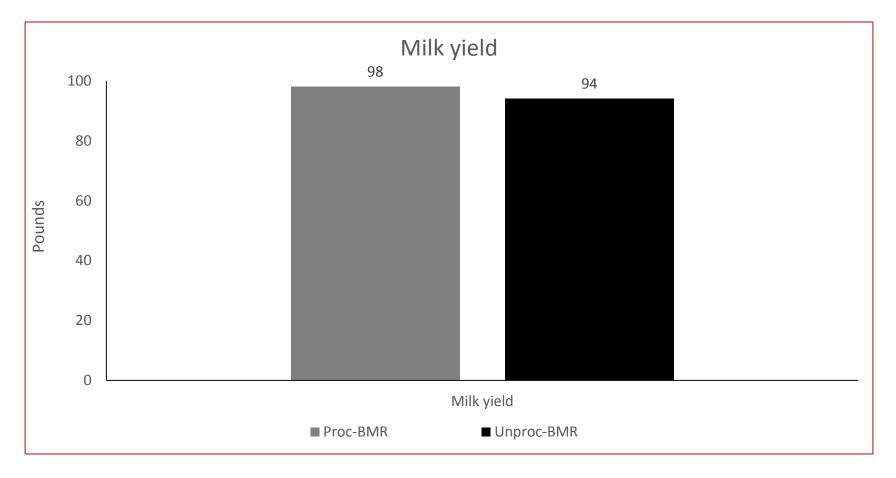
IOWA STATE UNIVERSITY



Only a few whole kernels

Most corn kernels are fractured to less than ¹/₂ their original size, mostly fragments and smashed kernels

IOWA STATE UNIVERSITY


What's the impact of processing?

Adapted from Ebling and Kung (2004)

IOWA STATE UNIVERSITY

What's the impact of processing?

Adapted from Ebling and Kung (2004)

IOWA STATE UNIVERSITY

Beef cattle response to kernel processing corn (Univ. Nebraska, 2018)

	Treatment			P - value
	Unprocessed	Processed	– SEM	P - Value
Initial BW, lbs	882	882	9.6	0.99
Final BW, lbs	1,337	1,338	11.2	0.96
DMI, lbs/d	32.6	31.8	0.27	0.04
ADG, lbs	4.38	4.38	0.047	0.93

Feed to gain reduced by 2.68% with kernel processing when feeding CS at 40% of finishing ration

Hilscher et al. (2018)

IOWA STATE UNIVERSITY

Dairy Extension Team

31

Evaluating kernel processing

- During harvest: manage it, **adjustment in real time**.
 - 32-oz cup
 - Spread sample
 - Sift and count halves and whole kernels
 - Goal is to have less than 2 half to whole kernels

These trade names are only provided as examples. This does not constitute endorsement of any particular product.

IOWA STATE UNIVERSITY

Evaluating kernel processing

- During harvest: manage it, make adjustment in real time.
 - Floating test
 - Fill a dish pan or 5-gallon bucket with water about ½ full
 - Collect 2 to 3 handfuls of chopped material into the bucket
 - Stir the content (less than 1 min is enough)
 - Remove the floating stover
 - Carefully drain the water
 - Pour the kernels onto a flat surface and visually inspect them
 - Good processing should result in almost no half or whole kernels.

From Univ. of WI Extension: http://fyi.uwex.edu/forage/files/2014/01/KernelProcessing-FOF.pdf 33

IOWA STATE UNIVERSITY

Evaluating kernel processing

- After harvest and storage, objective test:
 - Kernel Processing Score (KPS) or Corn Silage Processing Score (CSPS)
 - A sample of corn is sifted through 9 screen on a Ro-Tap shaker
 - Percentage of starch that passes through the 4.75 mm screen

Less than 50%	50 to 69%	More than 70%
Inadequately processed	Adequately processed	Optimally processed

IOWA STATE UNIVERSITY

Dairy Extension Team

34

CUST: Iowa State Universit # 3560 (5) CLIENT: Hugo - ISU Hugo A. Ramirez Ames , IA 50011 DESC: MF silage

 Moisture
 59.1%

 Dry Matter
 40.9%

 Starch (dry basis)
 40.5%

Particle Size Dry Matter Distribution prior to grinding

Coarse Screen (greater than 4.75 mm) 32% Medium Screen 53%

Fine screen (less than 1.18 mm) 15%

Percentage of starch passing through the coarse screen. 83%

35

IOWA STATE UNIVERSITY

CUMBERLAND VALLEY ANALYTICAL SERVICES

Laboratory services for agriculture ... from the field to the feed bunk.

Farm:	
Desc:	BUNKER 2
Submitter:	RAMIREZ, HUGO A.
Account:	

Copies to:

Lab ID:	21267 069
Sampled:	12/22/2016
Arrived:	01/05/2017
Completed:	01/11/2017
Reported:	01/11/2017

Corn Silage Processing Score

% of starch passing a 4.75mm screen **61.9**

The Corn Silage Processing Score (CSPS) was developed by Dr. Dave Mertens formerly of the USDA Forage Research Center as a tool to define the adequacy of kernel processing by forage harvesters. In addition, the CSPS is a tool that defines starch particle size and can be used to make inference on ruminal and total tract digestibility of corn silage starch. Approximately 600 ml of dried corn silage is sieved in a Ro-Tap Shaker for 10 minutes. This unit oscillates 278 timer per minute and "taps" the top of the sieves 150 times per minute to create an aggressive shaking action. Material that passes through the 4.75 mm sieve is collected and analyzed for starch content. The percentage of starch that passes through the screen becomes the "Processing Score".

Guidelines:

- Greater than 70% Optimally Processed
- Between 50% and 70% Adequately Processed
- Less than 50% Inadequately Processed

IOWA STATE UNIVERSITY

DAIRYLAND LABORATORIES, INC. Arcadia, WI 54612 Telephone 608-323-2123

DATE: 1/ 6/2017 SAMPLE: 001-1701-092278

CLIENT: Hugo Ramirez

DESC: CS bunker 2

Moisture	71.6%
Dry Matter	28.4%
Starch (dry basis)	28.2%

Particle Size Dry Matter Distribution prior to grinding	m
Coarse Screen (greater than 4.75 mm)	43%
Medium Screen	47%
Fine screen (less than 1.18 mm)	10%

Percentage of starch passing through the coarse screen. 60%

CUST:

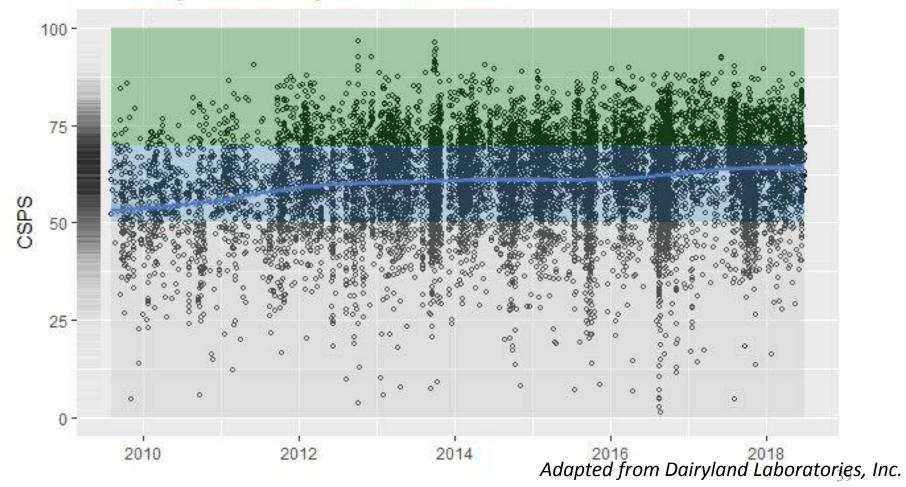
37

IOWA STATE UNIVERSITY

CS-17

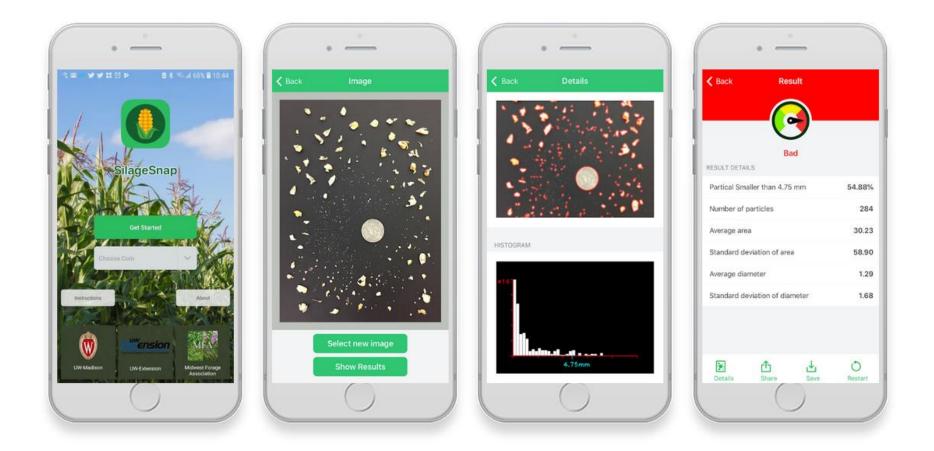
SAMPLE INFO	ORMATION			
Lab ID:	23271 163	Series:		
Crop Year: Cutting#:	2017	Version:	2.0	
Feed Type:	CORN SILAGE			
CHEMISTRY A	NALYSIS RESULTS	5		
Moisture				57.5

₩ K	20 V.111 dV	VALLEY ANALY for agriculture from the fi	NYNG 111 536 NNYN 537	
Farm:		Copies to:	Lab ID:	23271 163
Desc:	CS-17		Sampled:	11/27/2017
Submitter:	RAMIREZ, HUGO A.		Arrived:	12/14/2017
Account:	IOWA STATE UNIVERSITY		Completed:	12/18/2017
			Reported:	03/26/2018

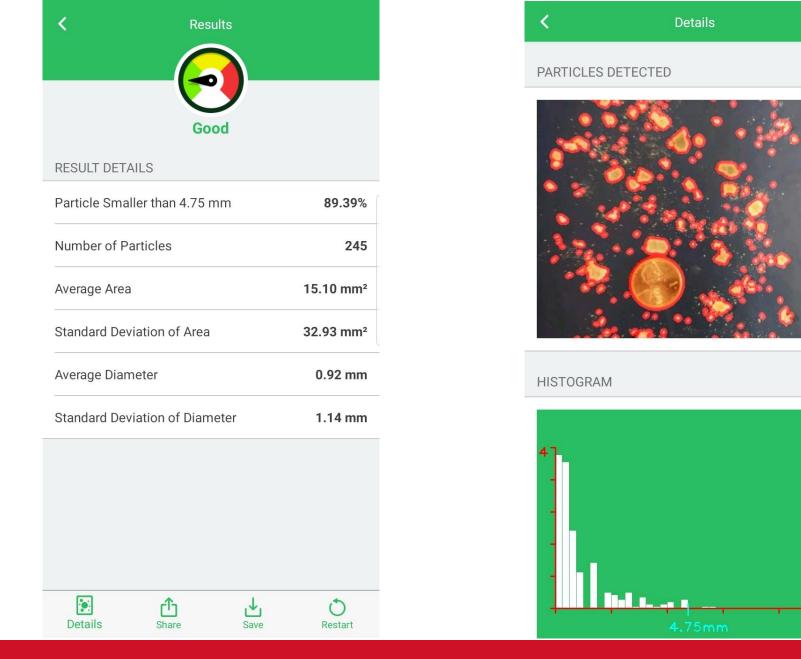

Corn Silage Processing Score

% of starch passing a 4.75mm screen **23.6**

IOWA STATE UNIVERSITY

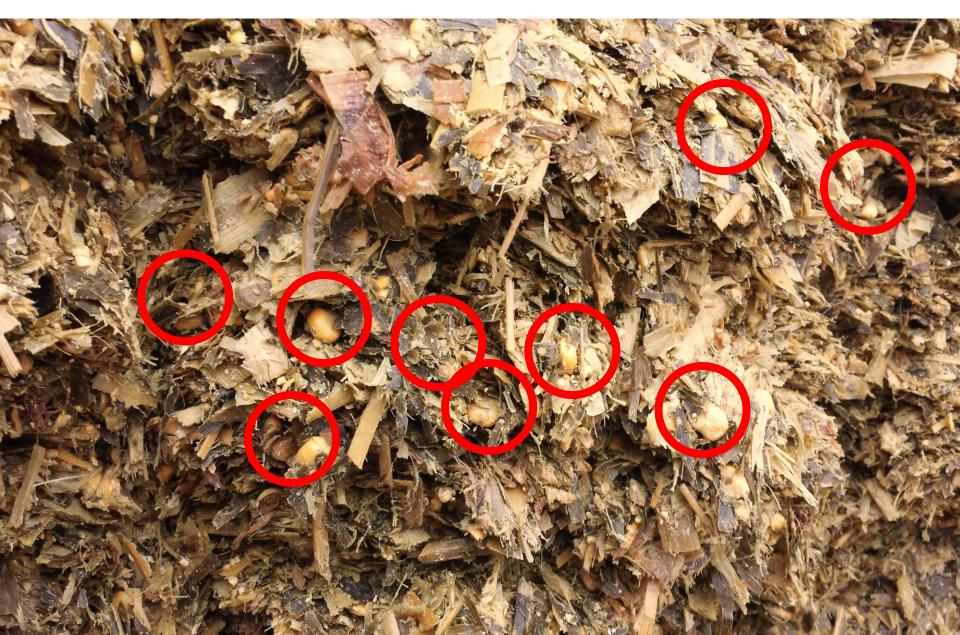

On our way from common to standard

Corn Silage Processing Score since 2010



IOWA STATE UNIVERSITY

Silage Snap



IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Kernel processing ...gone wrong

Piece of cob with kernels still attached to it!!!

Starch is already there, let's make sure we make it available!!!

Many whole kernels, starch is encased and not readily available!!!

IOWA STATE UNIVERSITY

Bringing the forage to the storage structure: density is key = packing is a critical point

IOWA STATE UNIVERSITY

Shape – maintain slope of 3 to 1, or 4 to 1

IOWA STATE UNIVERSITY

Too steep and too high = Spoiled material on top

This material is already paid for Not efficient use of resources More labor to remove rotten material and high risk!!! Significant shrink!!!

If preserved properly, one can feed more cows or the same number cows for longer

46

IOWA STATE UNIVERSITY

Weight of tractor / 800 = tons per hour

Or

Tons per hour * 800 = weight needed

IOWA STATE UNIVERSITY

Layers of 4 to 5 inches thick to ensure good packing

IOWA STATE UNIVERSITY

						Spreadsheet to Calculate Average				
						Silage Density in a Bunker Silo(Englis	h Units)			
						Brian Holmes(1) and Richard Muck(2)				
						(1) Biological Systems Engineering Dept. and				
			'			(2) US Dairy Forage Research Center				
			<u> </u>	ļ!		University of Wisconsin-Madison				
Bunker Si	lo Wall	Height (†	feet) =	<u> </u>	12	23-Aug-07	· •			
Bunker Si	ilo Maxi	mum Sil	lage Heigh	nt (feet) =	15	Values in yellow cells are user changeable	Maximum	•		
				•		-	Height (ft)			
Silage De	livery R	ate to B	unker (T A	AF/Hr) =	150	Typical values 15-200 T AF/hr		Wall		
				,		· / / · · · · · · · · · · · · · · · · ·	15	Height (ft)		
211 D.m	**-#**	2	1 / 1 ins al		0.25		15	neight (it)	Horizontal Silo	
Sliage Dry	/ Matter	Conten	nt (decimal	ie 0.35) =	0.35	Recommended range of DM content = 0.3-0.4				
				1				12		
Silage Par	cking L/	aver Thi	ickness (in	nches) =	8	Recommended value is 6 inches or less				
			· · ·				+	+		
,						Treater Decking Time (0/ of Filling Time)				
Packing 1	Tractor -	- Each 1	Tractor	Tractor Weight (lbs)		Tractor Packing Time (% of Filling Time)				
Packing T	Tractor	- Each 1	Tractor	Tractor Weight (lbs)		Tractor Packing Time (% of Filling Time)				
					40 000					
Tractor # 1	1 1	Typical trac	ctor weight is	s 10,000-60,000 lbs	40,000	100				
Tractor # 1 Tractor # 2	ז 1 ז 2 ז	Typical trac Typical trac	ctor weight is ctor weight is	s 10,000-60,000 lbs s 10,000-60,000 lbs	40,000	100 100				
Tractor # 1 Tractor # 2 Tractor # 3	1 1 2 1 3 1	Typical trac Typical trac Typical trac Typical trac	ctor weight is ctor weight is ctor weight is	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs	40,000 0	100 100 0				
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4	1 1 2 1 3 1 4 1	Typical trac Typical trac Typical trac Typical trac Typical trac	ctor weight is ctor weight is ctor weight is ctor weight is ctor weight is	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs	40,000 0 0	100 100				
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4 Proportior	1 1 2 1 3 1 4 1	Typical trac Typical trac Typical trac Typical trac Typical trac tal Tracto	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs	40,000 0 80,000	100 100 0 0			Image: Constraint of the sector of	
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4	1 1 2 1 3 1 4 1	Typical trac Typical trac Typical trac Typical trac Typical trac tal Tracto	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs	40,000 0 0	100 100 0				
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4 Proportion	1 1 2 1 3 1 4 1	Typical trac Typical trac Typical trac Typical trac Typical trac tal Tracto	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs	40,000 0 80,000	100 100 0 0				
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4 Proportion	1 1 2 1 3 1 4 1	Typical trac Typical trac Typical trac Typical trac Typical trac tal Tracto	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs	40,000 0 80,000	100 100 0 0				
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4 Proportion	1 1 2 1 3 1 4 1	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	actor weight is actor weight is actor weight is actor weight is actor Weight is eet) =	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (Ibs) =	40,000 0 80,000 13.5	100 100 0 0			Image: state	
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4 Proportion Average S	1 1 2 1 3 1 4 1 Silage H	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	actor weight is actor weight is actor weight is actor weight is actor Weight is actor Weight eet) =	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor =	40,000 0 80,000 13.5 341.6	100 100 0 0			Image: set of the set of th	
Tractor # 1 Tractor # 2 Tractor # 3 Tractor # 4 Proportion Average S	1 1 2 1 3 1 4 1 Silage H	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	actor weight is actor weight is actor weight is actor weight is actor Weight is actor Weight eet) =	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (Ibs) =	40,000 0 80,000 13.5	100 100 0 0 Green cells are intermediate calculated values				
Tractor # 1 Tractor # 2 Tractor # 2 Tractor # 4 Proportion Average S	1 1 2 1 3 1 4 1 Silage H	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	actor weight is actor weight is actor weight is actor weight is actor Weight is actor Weight eet) = Packing F y = Bulk De	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor =	40,000 0 80,000 13.5 341.6	100 100 0 0 Green cells are intermediate calculated values	nded			
Tractor # 1 Tractor # 2 Tractor # 2 Tractor # 4 Proportion Average S	1 1 2 1 3 1 4 1 Silage H	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight eet) = Packing F y = Bulk De ilk Density	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor = lensity (lbs AF/cu ft) = / (lbs AF/cu ft)=	40,000 0 80,000 13.5 341.6 39.5 73.3	100 100 100 0 0 Green cells are intermediate calculated values Values in pink cells are results of calculations Wet Density greater than 44 lbs AF/cu ft is recommended	nded		Image: section of the section of t	
Tractor # 1 Tractor # 2 Tractor # 2 Tractor # 4 Proportion Average S	1 1 2 1 3 1 4 1 Silage H	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight eet) = Packing F y = Bulk De ilk Density	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor = lensity (lbs AF/cu ft) =	40,000 0 80,000 13.5 341.6 39.5 73.3	100 100 100 0 0 Green cells are intermediate calculated values Values in pink cells are results of calculations Wet Density greater than 44 lbs AF/cu ft is recommended	nded		Image: state	
Tractor # 1 Tractor # 2 Tractor # 2 Tractor # 4 Proportion Average S	1 1 2 1 3 1 4 1 Silage H	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight eet) = Packing F y = Bulk De ilk Density	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor = lensity (lbs AF/cu ft) = / (lbs AF/cu ft)=	40,000 0 80,000 13.5 341.6 39.5 73.3	100 100 100 0 0 Green cells are intermediate calculated values Values in pink cells are results of calculations Wet Density greater than 44 lbs AF/cu ft is recomment Wet Density greater than Max. Wet Density is unreal	nded		Image: state	
Tractor # 1 Tractor # 2 Tractor # 2 Tractor # 4 Proportion Average S	1 1 2 1 3 1 4 1 Silage H	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe	ctor weight is ctor weight is ctor weight is ctor weight is cor Weight eet) = Packing F y = Bulk De ilk Density	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor = lensity (lbs AF/cu ft) = / (lbs AF/cu ft)=	40,000 0 80,000 13.5 341.6 39.5 73.3	100 100 100 0 0 Green cells are intermediate calculated values Values in pink cells are results of calculations Wet Density greater than 44 lbs AF/cu ft is recomment Wet Density greater than Max. Wet Density is unreal	nded		Image: set of the set of th	
Tractor # 1 Tractor # 2 Tractor # 2 Proportior Average S Est. Avera Maximum	1 1 2 1 3 1 4 1 Silage H age Wet	Typical trac Typical trac Typical trac Typical trac tal Tracto leight (fe t Density /able Bul	ictor weight is ictor weight is ictor weight is ictor weight is ictor Weight eet) = Packing F y = Bulk De ilk Density	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor = ensity (lbs AF/cu ft) = / (lbs AF/cu ft)= Gas Filled Porosity =	40,000 0 80,000 13.5 341.6 39.5 73.3 0.46	100 100 100 0 0 Green cells are intermediate calculated values Values in pink cells are results of calculations Wet Density greater than 44 lbs AF/cu ft is recommended Gas Filled Porosity less than 0.40 is recommended	nded		Image: state	
Tractor # 1 Tractor # 2 Tractor # 2 Proportion Average S Est. Avera Maximum	1 1 2 1 3 1 4 1 Silage H age Wet a Achieva	Typical trac Typical trac Typical trac Typical trac tal Tracto Height (fe t Density rable Bul	ctor weight is ctor weight is ctor weight is cor Weight is cor Weight eet) = Packing F y = Bulk De ilk Density	s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs s 10,000-60,000 lbs t (lbs) = Factor = lensity (lbs AF/cu ft) = / (lbs AF/cu ft)=	40,000 0 80,000 13.5 341.6 39.5 73.3	100 100 100 0 0 Green cells are intermediate calculated values Values in pink cells are results of calculations Wet Density greater than 44 lbs AF/cu ft is recomment Wet Density greater than Max. Wet Density is unreal	inded			

49

IOWA STATE UNIVERSITY

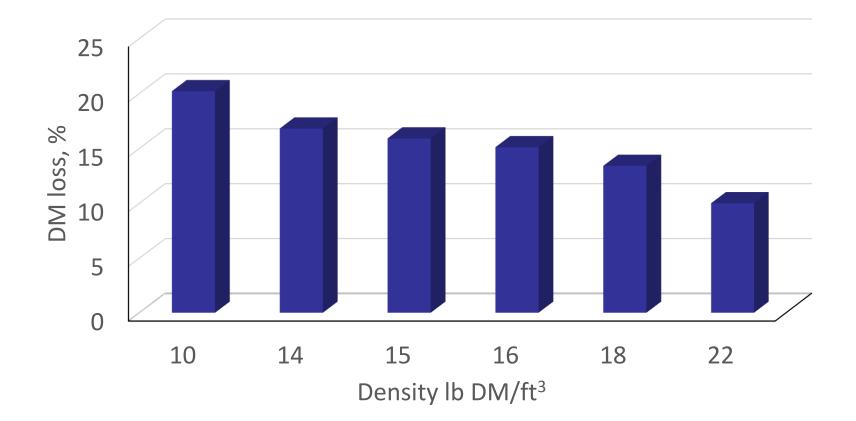
							···
		Spreadsheet to Calculate Average					
		Silage Density in a Bunker Silo(Englis	sh Units)				
		Brian Holmes(1) and Richard Muck(2)					
		(1) Biological Systems Engineering Dept. and					
		(2) US Dairy Forage Research Center					
		University of Wisconsin-Madison					
Bunker Silo Wall Height (feet) =	12	23-Aug-07	1				
Bunker Silo Maximum Silage Height (feet) =	· 15	Values in yellow cells are user changeable	Maximum				
			Height (ft)				
Silage Delivery Rate to Bunker (T AF/Hr) =	150	Typical values 15-200 T AF/hr		Wall			
			15	Height (ft)		Horizontal Silo	
Silage Dry Matter Content (decimal ie 0.35) =	= 0.35	Recommended range of DM content = 0.3-0.4				nonzontal Silo	
				12			
Silage Packing Layer Thickness (inches) =	6	Recommended value is 6 inches or less					
				•			
Packing Tractor - Each Tractor Tractor V	Weight (Ibs)	Tractor Packing Time (% of Filling Time)			`		
Tractor # 1 Typical tractor weight is 10,000-60,00	000 lbs 40,000	100					
Tractor # 2 Typical tractor weight is 10,000-60,00	000 lbs 40,000	100					
Tractor # 3 Typical tractor weight is 10,000-60,00		0					
Tractor # 4 Typical tractor weight is 10,000-60,00		0					
Proportioned Total Tractor Weight (lbs) =	80,000						
Average Silage Height (feet) =	13.5	Green cells are intermediate calculated values	(
	13.0	Siden sens are interneulate calculated values					
			+				
Packing Factor =	455.4	Values in pink cells are results of calculations	++				
Est. Average Wet Density = Bulk Density (Ibs		Wet Density greater than 44 lbs AF/cu ft is recomme	nded				
Maximum Achievable Bulk Density (Ibs AF/c		Wet Density greater than Max. Wet Density is unrea					
Gas Fille	ed Porosity = 0.39	Gas Filled Porosity less than 0.40 is recommended					
Est. Average Dry Matter Density (lbs DM/cu f	ft) = 15.6	Density greater than 15 lbs DM/cu ft is recommended	4				
Maximum Achievable DM Density (Ibs DM/cu i Maximum Achievable DM Density (Ibs DM/cu	-	DM Density greater than 15 bs DM/cu it is recommended DM Density greater than Max. Achievable is unrealist					
azinani Achievable Divi Density (ibs DW/ct	20.1	ow Density greater than wax. Achievable is unrealis					

IOWA STATE UNIVERSITY

Dairy Extension Team

50

Compaction - packing


IOWA STATE UNIVERSITY

Packing, packing, packing!

IOWA STATE UNIVERSITY

Loose silage is lost silage!

IOWA STATE UNIVERSITY

Covering Practices

Uncovered silage:

- Plant keeps respiring longer
- Aerobic spoilage
- Loss of DM and nutrients
- Spoilage, negative on rumen health

"The introduction of plastic films to cover silage in the early 1950s can be considered a revolution, as their use has allowed all farmers to benefit from the advantages of ensiling" Anonymous (1953)

IOWA STATE UNIVERSITY

Dairy Extension Team

54

Spoilage...only the top layer. Not big deal?

- Bunker dimensions
 - 40 ft imes 100 ft imes 12 ft
- Density 16 lbs DM/ft³
- Storage appr. 1,000 ton with approximately 25% of the total material is stored in the top 3 ft

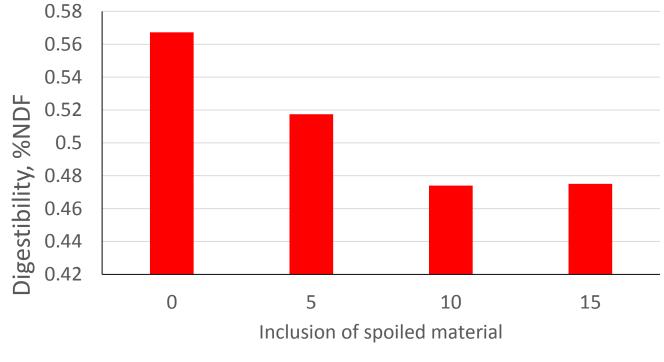
- Uncovered OM losses
 - 47% top 1.5 ft
 - 11% next 1.5 ft below
- Covered
 - 20% top 1.5 ft
 - 5% next 1.5 ft below
 (Bolsen, 1997)

Farm conditions, DM losses in the 3 ft layer immediately below the plastic film can be > 30% of the original ensiled crop. (Borreani et al., 2007; Holmes and Bolsen, 2009). 55

IOWA STATE UNIVERSITY

Storing conditions: uncovered vs bags

- Uncovered silage, plant keeps
 respiring longer
- Aerobic spoilage
- Loss of DM and nutrients
- **↑** Risk for mycotoxins development


- Ag bags offer good anaerobic environment
- Flexibility in management, location
- Better recovery of DM and nutrients
- Ψ Risk for mycotoxin development

IOWA STATE UNIVERSITY

Effect of including Surface-spoiled corn silage with non-spoiled corn silage

In vitro NDF digestibility

Carroll et al., (2019)

IOWA STATE UNIVERSITY

Not covered silage is a problem, covering should fix it...as long as it is well covered!!!

Slope is too steep, tires do not stay in place Safety risk!

Excellent coverage with tires touching each other 58

IOWA STATE UNIVERSITY

Covering and sealing

IOWA STATE UNIVERSITY

Covering done right!

60

IOWA STATE UNIVERSITY

Chopped right, packed tight and well covered!!!

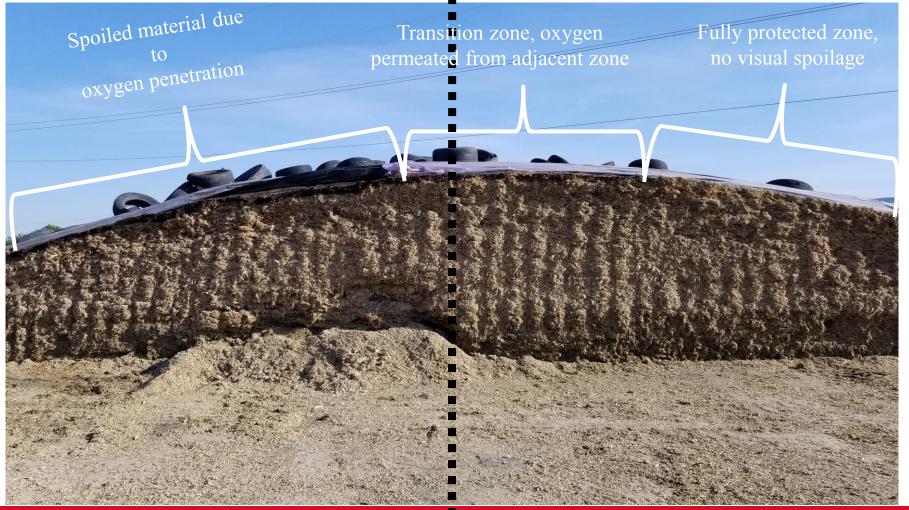
IOWA STATE UNIVERSITY

Oxygen barrier films

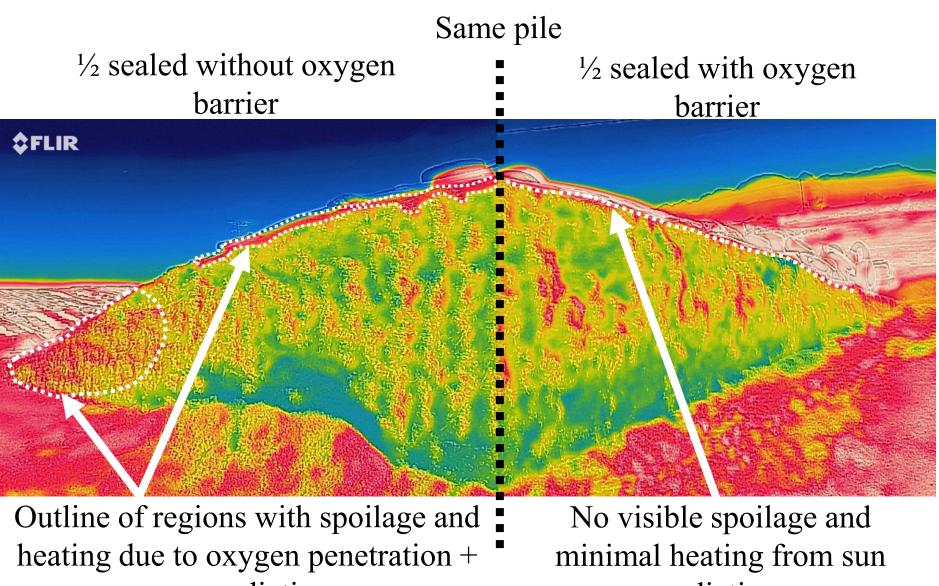
- Approx. 40% reduction of DM loss in the upper 60 cm of silage piles (Wilkinson and Fenlon, 2014)
- Top surface inedible silage (Wilkinson and Fenlon, 2014)
 - 10.7% for standard film
 - 2.96% for and OB film systems
- Economic return compared to conventional films for every ton of fresh forage
 - \$1.13 (Borreani and Tabacco, 2014)
 - \$5.80 (Bolsen et al., 2012)

62

IOWA STATE UNIVERSITY


Visual appraisal of the effect of oxygen barriers on top region of a silage pile

Without oxygen barrier


With oxygen barrier

IOWA STATE UNIVERSITY

½ sealed without oxygenSame pile½ sealed with oxygen½ sealed with oxygenbarrierbarrier

IOWA STATE UNIVERSITY

sun radiation

radiation

IOWA STATE UNIVERSITY

Reduction in DM losses by oxygen barrier films

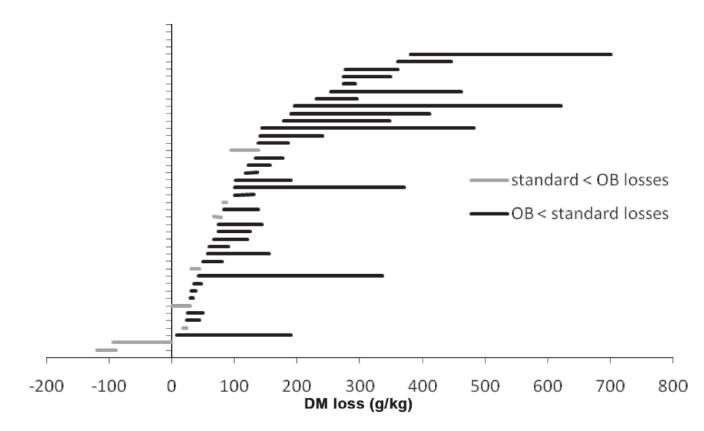
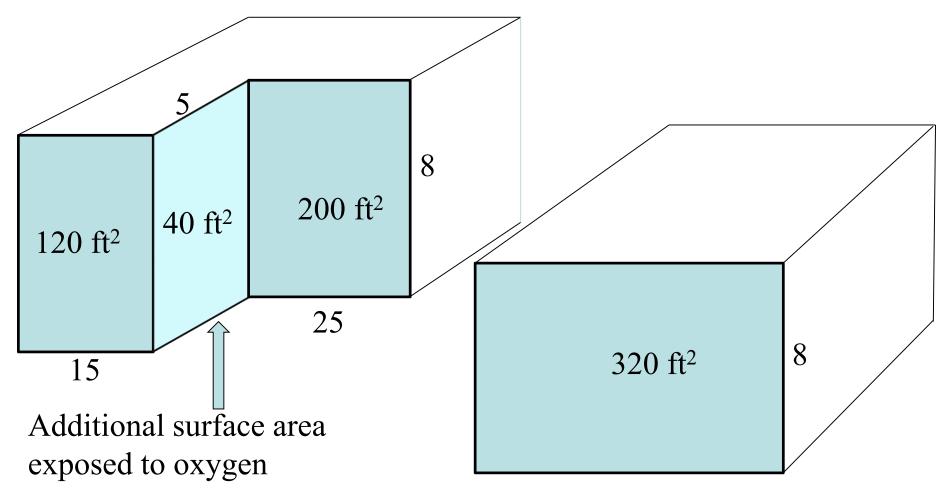


Figure 12. Horizontal silo comparison-differences [standard polyethylene (PE) vs. oxygen barrier (OB) film losses of DM] ordered by OB loss (from Wilkinson and Fenlon, 2014).


IOWA STATE UNIVERSITY

Little to no spoilage

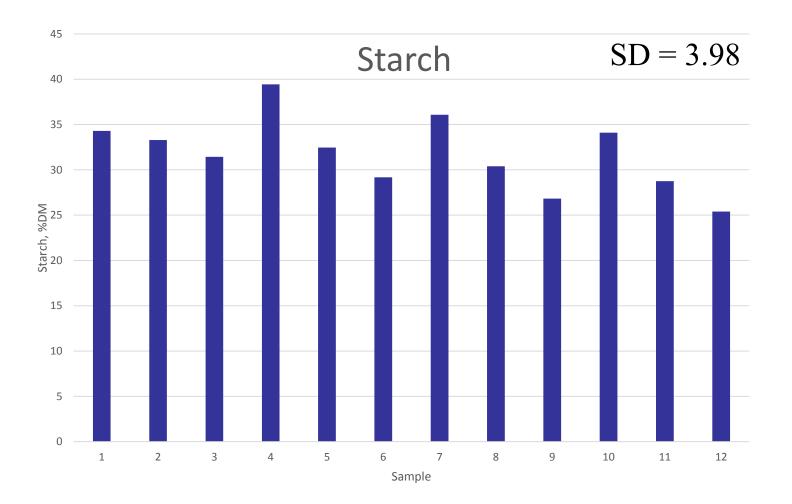
IOWA STATE UNIVERSITY

Importance of face management

40

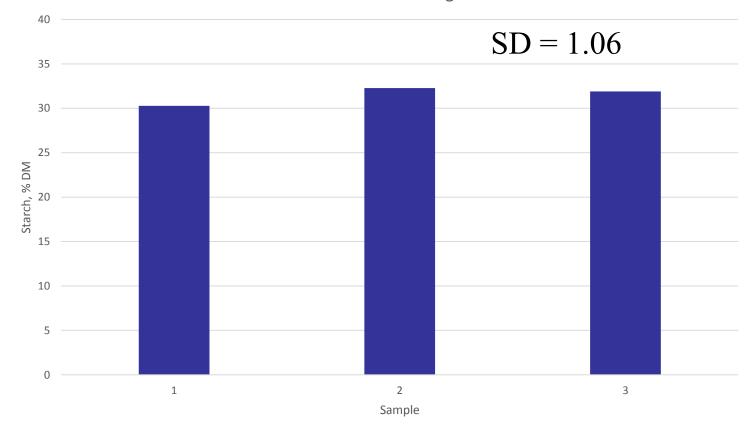
IOWA STATE UNIVERSITY

Managing variation



IOWA STATE UNIVERSITY

Mixing reduces variability



IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Starch - After mixing

IOWA STATE UNIVERSITY

The five C's of Corn Silage Quality

- 1. Content of dry matter maturity
 - Aim for 32-35% DM (2/3 to 3/4 milk line)
- 2. Chop length and kernel processing
 - 19 mm or ¾ inch chop length, kernel processor 2 mm or tighter
- 3. Compaction, packing
 - Goal is at lest 15 lbs DM per cubic foot
- 4. Covering and sealing
 - Seal as soon as possible, oxygen barrier and black and white plastic
- 5. Care and management at feed-out

IOWA STATE UNIVERSITY

Dr. Hugo A. Ramírez Ramírez Dairy Nutrition & Management Department of Animal Science hramirez@iastate.edu 515-294-5517

IOWA STATE UNIVERSITY Extension and Outreach

Thanks for your attention