Nutritional Considerations in Robotic Herds

Victor E. Cabrera
University of Wisconsin-Madison Dairy Science

Alex Bach
Department of Ruminant production, IRTA (Institute for Research and Technology in Agrifood)
ICREA (Catalan Institute for Research and Advanced Studies)
Rationale

Cows in conventional milking parlors:
• Kept structured, consistent, and social milking and feeding routine
• Obtain all their nutrients from a TMR

Cows in automatic milking systems (AMS):
• Obtain a fraction of their nutrients during milking and through a partial mixed ration (PMR)
• Their milking frequency and time of milking vary across time
AMS

Challenges: milking frequency not only dependent on concentrates at the AMS, but
• the social structure of the herd,
• the farm layout design,
• the type of traffic imposed to cows,
• the type of flooring,
• the health condition of the cow

Opportunities
• manipulate the number of cows per AMS
• milking more frequently
• feeding more precisely
Overcome challenges and capture opportunities

- Behavioral Considerations
- Nutritional Considerations
- Economic Considerations

Bach & Cabrera, 2017
Behavioral Considerations

Maximum AMS return on investment → full utilization of the AMS with little or no human intervention

Crucial → maximizing milking frequency and minimizing fetching

Challenge → consistent milking frequency throughout time
Behavioral Considerations

Common → ~2.5 average milkings
Wagner-Storch et al., 2003; Bach et al. 2009; Deming et al., 2013

Variation → can be high

Change frequency of milkings → change in the AMS DMI
Behavioral Considerations

↑ AMS visits & ↓ variability

→

Palatable feed

Forced (guided) traffic

 AMS

Feed Bunk
Forced traffic reduces PMR intake

Forced traffic decreases milk yield
Feed allowance does not increase visits

300 g/visit attracts grazing cows

Bach et al., 2007

Scott et al., 2014
Behavioral Considerations

Cows are gregarious → Sync behaviors
Benham, 1992

AMS force individualism → unnatural

Dominant cows → less time in waiting area
Halachmi, 2009
Nutritional Considerations

AMS concentrate feeding → main attraction to milking

Cows do not consume all concentrate → > 4 kg/d

Prescott et al, 1998
Nutritional Considerations

Inconsistent nutrient supply → affects negatively milk yield

MacBeth et al., 2013

> AMS concentrate allowance → < density PMR

Milk yield decreased → > AMS concentrate allowance

Tremblay et al., 2016
AMS time/milking → 7 min
Castro et al. 2012

A cow can consume → < 2.8 kg/milking

Theoretically, a cow can consume → < 8.4 kg/3 milkings per d

To avoid variation → better an allowance of 4 kg/d
Nutritional Considerations

25 vs. 49% starch for 3 kg/d allowance → no change in milk yield, composition, or visits
Halachmi et al., 2006

Minerals and vitamins → normally not provided in AMS → becomes an issue when cows rely more in concentrate

Flavoring agents → in general no positive effects
Harper et al., 2016
Precision feeding opportunity

TMR or PMR inefficiencies \rightarrow improved by AMS supplementation

Cows sort
Leonardi and Armentano, 2007

Composition changes
Kononoff and Heinrichs, 2003

Intake is variable \rightarrow between cows and within cows

Balanced diet for a cow \rightarrow unbalanced diet for another cow
Precision feeding opportunity

Decrease imbalance ➜ AMS concentrate

Most AMS only have single bin to deliver concentrates

Imbalance ➜ will remain and progressively increase

How to overcome it ➜ provide a custom-made cow-specific concentrate

On the basis of milk, BW, state, components, etc.
Economic considerations

Maximizing milk production per AMS proposed as goal for economic efficiency
Sonck & Donkers, 1995

More cows per AMS -> milkings reduced and time AMS used by cows increased
Tremblay et al., 2016

Maximizing milking frequency -> should be the main goal of AMS
Economic analyses

Data from a North Catalanian farm

AMS 1
- 64 cows
 - Primiparous (PMC)
- AMS concentrate
 - 3.84 kg/d
 - [0.98 - 7.42]
- Milk yield
 - 32.6 kg/d
 - [15.6 - 46.0]

AMS 2
- 70 cows
 - Multiparous (MPC)
- AMS concentrate
 - 4.70 kg/d
 - [1.60 - 9.04]
- Milk yield
 - 41.3 kg/d
 - [17.3 - 59.6]
Dataset

AMS concentrate
- 2.07 Mcal of NEI/kg
- 22.4% CP
- €274/MT

PMR feed
- 1.62 Mcal of NEI/kg
- 15.6% CP
- €92.5/MT

Cow consumption
- DMI: NRC (2001)
- NEI & CP: milk yield

Income over feed cost (IOFC)
- Milk price at €0.32/kg
1 - Change number of cows per AMS

70 to 65 MPC

Total milk harvested per AMS remained constant
Tremblay et al., 2016

2,892 kg milk AMS/d
• 70 MPC = 41.3 kg/cow.d
• 65 MPC = 44.5 kg/cow.d

Extra 3.2 kg/cow.d
• Required ~2.5 Mcal NEI/cow.d

Additional PMR
• Maintaining AMS concentrate allowance equal
1 - Change number of cows per AMS

70 to 65 MPC

IOFC

- 70 MPC = €720.8/AMS.d
- 65 MPC = €727.5/AMS.d

€2,453/AMS.yr
€6.72/d

65 MPC increased IOFC

- Less feed for maintenance
2 - Limit amount of AMS concentrate

Less allowance of AMS concentrate
• minimize variability in concentrate consumption
• reducing feed costs
• lower cost per unit of nutrient with PMR

PMC
• 3.74 to 2 kg/cow.d

MPC
• 4.70 to 3 kg/cow.d
2 - Limit amount of AMS concentrate

PMC
- 3.74 to 2 kg/cow.d
- €7.9 to €8.1/cow.d
- ↑€6,710/AMS.yr

MPC
- 4.70 to 3 kg/cow.d
- €10.0 to €10.3/cow.d
- ↑€6,748/AMS.yr
2 - Limit amount of AMS concentrate
AMS concentrate
• normally same density of nutrients for all animals
• ideally, it could be formulated individually

AMS concentrate
• 2 kg/cow.d PMC
• 3 kg/cow.d MPC
3 - Precision feeding

PMC IOFC
• ↑€1.30/cow.d

MPC IOFC
• ↑€1.56/cow.d

Whole farm
• ↑€192/d
• ↑€70,080/yr
Conclusions economic considerations

Reducing number of animals per AMS could improve IOFC if production does not decline

Restricting concentrate allowance to kg/cow.d 3 (PMC) and 4 (MPC) improves IOFC and minimizes variation nutrient intake

Precision feeding to meet cow-specific nutrient requirements may greatly improve IOFC
Thanks